Copied to
clipboard

G = C4×C42.C2order 128 = 27

Direct product of C4 and C42.C2

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C4×C42.C2, C43.13C2, C42.63Q8, C23.187C24, C4.18(C4×Q8), C44(C428C4), C42.278(C2×C4), C428C4.56C2, C22.78(C23×C4), C22.28(C22×Q8), (C22×C4).751C23, (C2×C42).1010C22, C47(C23.63C23), C46(C23.65C23), C23.65C23.94C2, C23.63C23.67C2, C2.C42.469C22, C2.5(C23.37C23), C2.11(C23.36C23), C2.9(C2×C4×Q8), (C4×C4⋊C4).32C2, C2.16(C4×C4○D4), C4⋊C4.154(C2×C4), (C2×C4).226(C2×Q8), C2.4(C2×C42.C2), (C2×C4).22(C22×C4), C22.79(C2×C4○D4), (C2×C4)3(C428C4), (C2×C4).640(C4○D4), (C2×C4⋊C4).801C22, (C2×C42.C2).39C2, (C2×C4)3(C23.63C23), SmallGroup(128,1037)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C4×C42.C2
C1C2C22C23C22×C4C2×C42C43 — C4×C42.C2
C1C22 — C4×C42.C2
C1C22×C4 — C4×C42.C2
C1C23 — C4×C42.C2

Generators and relations for C4×C42.C2
 G = < a,b,c,d | a4=b4=c4=1, d2=c2, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=bc2, dcd-1=b2c >

Subgroups: 332 in 242 conjugacy classes, 160 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, C23, C42, C42, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2.C42, C2×C42, C2×C42, C2×C4⋊C4, C42.C2, C43, C4×C4⋊C4, C428C4, C23.63C23, C23.65C23, C2×C42.C2, C4×C42.C2
Quotients: C1, C2, C4, C22, C2×C4, Q8, C23, C22×C4, C2×Q8, C4○D4, C24, C4×Q8, C42.C2, C23×C4, C22×Q8, C2×C4○D4, C2×C4×Q8, C4×C4○D4, C2×C42.C2, C23.36C23, C23.37C23, C4×C42.C2

Smallest permutation representation of C4×C42.C2
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 48 25 56)(2 45 26 53)(3 46 27 54)(4 47 28 55)(5 108 10 98)(6 105 11 99)(7 106 12 100)(8 107 9 97)(13 101 127 93)(14 102 128 94)(15 103 125 95)(16 104 126 96)(17 51 24 57)(18 52 21 58)(19 49 22 59)(20 50 23 60)(29 68 37 74)(30 65 38 75)(31 66 39 76)(32 67 40 73)(33 62 43 70)(34 63 44 71)(35 64 41 72)(36 61 42 69)(77 119 85 111)(78 120 86 112)(79 117 87 109)(80 118 88 110)(81 121 91 115)(82 122 92 116)(83 123 89 113)(84 124 90 114)
(1 33 22 40)(2 34 23 37)(3 35 24 38)(4 36 21 39)(5 117 127 114)(6 118 128 115)(7 119 125 116)(8 120 126 113)(9 112 16 123)(10 109 13 124)(11 110 14 121)(12 111 15 122)(17 30 27 41)(18 31 28 42)(19 32 25 43)(20 29 26 44)(45 63 60 74)(46 64 57 75)(47 61 58 76)(48 62 59 73)(49 67 56 70)(50 68 53 71)(51 65 54 72)(52 66 55 69)(77 103 92 100)(78 104 89 97)(79 101 90 98)(80 102 91 99)(81 105 88 94)(82 106 85 95)(83 107 86 96)(84 108 87 93)
(1 77 22 92)(2 78 23 89)(3 79 24 90)(4 80 21 91)(5 65 127 72)(6 66 128 69)(7 67 125 70)(8 68 126 71)(9 74 16 63)(10 75 13 64)(11 76 14 61)(12 73 15 62)(17 84 27 87)(18 81 28 88)(19 82 25 85)(20 83 26 86)(29 97 44 104)(30 98 41 101)(31 99 42 102)(32 100 43 103)(33 95 40 106)(34 96 37 107)(35 93 38 108)(36 94 39 105)(45 113 60 120)(46 114 57 117)(47 115 58 118)(48 116 59 119)(49 111 56 122)(50 112 53 123)(51 109 54 124)(52 110 55 121)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,48,25,56)(2,45,26,53)(3,46,27,54)(4,47,28,55)(5,108,10,98)(6,105,11,99)(7,106,12,100)(8,107,9,97)(13,101,127,93)(14,102,128,94)(15,103,125,95)(16,104,126,96)(17,51,24,57)(18,52,21,58)(19,49,22,59)(20,50,23,60)(29,68,37,74)(30,65,38,75)(31,66,39,76)(32,67,40,73)(33,62,43,70)(34,63,44,71)(35,64,41,72)(36,61,42,69)(77,119,85,111)(78,120,86,112)(79,117,87,109)(80,118,88,110)(81,121,91,115)(82,122,92,116)(83,123,89,113)(84,124,90,114), (1,33,22,40)(2,34,23,37)(3,35,24,38)(4,36,21,39)(5,117,127,114)(6,118,128,115)(7,119,125,116)(8,120,126,113)(9,112,16,123)(10,109,13,124)(11,110,14,121)(12,111,15,122)(17,30,27,41)(18,31,28,42)(19,32,25,43)(20,29,26,44)(45,63,60,74)(46,64,57,75)(47,61,58,76)(48,62,59,73)(49,67,56,70)(50,68,53,71)(51,65,54,72)(52,66,55,69)(77,103,92,100)(78,104,89,97)(79,101,90,98)(80,102,91,99)(81,105,88,94)(82,106,85,95)(83,107,86,96)(84,108,87,93), (1,77,22,92)(2,78,23,89)(3,79,24,90)(4,80,21,91)(5,65,127,72)(6,66,128,69)(7,67,125,70)(8,68,126,71)(9,74,16,63)(10,75,13,64)(11,76,14,61)(12,73,15,62)(17,84,27,87)(18,81,28,88)(19,82,25,85)(20,83,26,86)(29,97,44,104)(30,98,41,101)(31,99,42,102)(32,100,43,103)(33,95,40,106)(34,96,37,107)(35,93,38,108)(36,94,39,105)(45,113,60,120)(46,114,57,117)(47,115,58,118)(48,116,59,119)(49,111,56,122)(50,112,53,123)(51,109,54,124)(52,110,55,121)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,48,25,56)(2,45,26,53)(3,46,27,54)(4,47,28,55)(5,108,10,98)(6,105,11,99)(7,106,12,100)(8,107,9,97)(13,101,127,93)(14,102,128,94)(15,103,125,95)(16,104,126,96)(17,51,24,57)(18,52,21,58)(19,49,22,59)(20,50,23,60)(29,68,37,74)(30,65,38,75)(31,66,39,76)(32,67,40,73)(33,62,43,70)(34,63,44,71)(35,64,41,72)(36,61,42,69)(77,119,85,111)(78,120,86,112)(79,117,87,109)(80,118,88,110)(81,121,91,115)(82,122,92,116)(83,123,89,113)(84,124,90,114), (1,33,22,40)(2,34,23,37)(3,35,24,38)(4,36,21,39)(5,117,127,114)(6,118,128,115)(7,119,125,116)(8,120,126,113)(9,112,16,123)(10,109,13,124)(11,110,14,121)(12,111,15,122)(17,30,27,41)(18,31,28,42)(19,32,25,43)(20,29,26,44)(45,63,60,74)(46,64,57,75)(47,61,58,76)(48,62,59,73)(49,67,56,70)(50,68,53,71)(51,65,54,72)(52,66,55,69)(77,103,92,100)(78,104,89,97)(79,101,90,98)(80,102,91,99)(81,105,88,94)(82,106,85,95)(83,107,86,96)(84,108,87,93), (1,77,22,92)(2,78,23,89)(3,79,24,90)(4,80,21,91)(5,65,127,72)(6,66,128,69)(7,67,125,70)(8,68,126,71)(9,74,16,63)(10,75,13,64)(11,76,14,61)(12,73,15,62)(17,84,27,87)(18,81,28,88)(19,82,25,85)(20,83,26,86)(29,97,44,104)(30,98,41,101)(31,99,42,102)(32,100,43,103)(33,95,40,106)(34,96,37,107)(35,93,38,108)(36,94,39,105)(45,113,60,120)(46,114,57,117)(47,115,58,118)(48,116,59,119)(49,111,56,122)(50,112,53,123)(51,109,54,124)(52,110,55,121) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,48,25,56),(2,45,26,53),(3,46,27,54),(4,47,28,55),(5,108,10,98),(6,105,11,99),(7,106,12,100),(8,107,9,97),(13,101,127,93),(14,102,128,94),(15,103,125,95),(16,104,126,96),(17,51,24,57),(18,52,21,58),(19,49,22,59),(20,50,23,60),(29,68,37,74),(30,65,38,75),(31,66,39,76),(32,67,40,73),(33,62,43,70),(34,63,44,71),(35,64,41,72),(36,61,42,69),(77,119,85,111),(78,120,86,112),(79,117,87,109),(80,118,88,110),(81,121,91,115),(82,122,92,116),(83,123,89,113),(84,124,90,114)], [(1,33,22,40),(2,34,23,37),(3,35,24,38),(4,36,21,39),(5,117,127,114),(6,118,128,115),(7,119,125,116),(8,120,126,113),(9,112,16,123),(10,109,13,124),(11,110,14,121),(12,111,15,122),(17,30,27,41),(18,31,28,42),(19,32,25,43),(20,29,26,44),(45,63,60,74),(46,64,57,75),(47,61,58,76),(48,62,59,73),(49,67,56,70),(50,68,53,71),(51,65,54,72),(52,66,55,69),(77,103,92,100),(78,104,89,97),(79,101,90,98),(80,102,91,99),(81,105,88,94),(82,106,85,95),(83,107,86,96),(84,108,87,93)], [(1,77,22,92),(2,78,23,89),(3,79,24,90),(4,80,21,91),(5,65,127,72),(6,66,128,69),(7,67,125,70),(8,68,126,71),(9,74,16,63),(10,75,13,64),(11,76,14,61),(12,73,15,62),(17,84,27,87),(18,81,28,88),(19,82,25,85),(20,83,26,86),(29,97,44,104),(30,98,41,101),(31,99,42,102),(32,100,43,103),(33,95,40,106),(34,96,37,107),(35,93,38,108),(36,94,39,105),(45,113,60,120),(46,114,57,117),(47,115,58,118),(48,116,59,119),(49,111,56,122),(50,112,53,123),(51,109,54,124),(52,110,55,121)]])

56 conjugacy classes

class 1 2A···2G4A···4H4I···4AF4AG···4AV
order12···24···44···44···4
size11···11···12···24···4

56 irreducible representations

dim1111111122
type+++++++-
imageC1C2C2C2C2C2C2C4Q8C4○D4
kernelC4×C42.C2C43C4×C4⋊C4C428C4C23.63C23C23.65C23C2×C42.C2C42.C2C42C2×C4
# reps116142116420

Matrix representation of C4×C42.C2 in GL5(𝔽5)

20000
01000
00100
00040
00004
,
10000
02000
00300
00030
00003
,
40000
02000
00300
00001
00010
,
40000
00400
01000
00010
00004

G:=sub<GL(5,GF(5))| [2,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,2,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,3],[4,0,0,0,0,0,2,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,1,0],[4,0,0,0,0,0,0,1,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,4] >;

C4×C42.C2 in GAP, Magma, Sage, TeX

C_4\times C_4^2.C_2
% in TeX

G:=Group("C4xC4^2.C2");
// GroupNames label

G:=SmallGroup(128,1037);
// by ID

G=gap.SmallGroup(128,1037);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,232,758,100,304]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b*c^2,d*c*d^-1=b^2*c>;
// generators/relations

׿
×
𝔽